7 resultados para Microcystis viridis

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of a synoptic survey at 14 sites across the north of Ireland undertaken to determine the occurrence of cyanobacteria and their constituent microcystin cyanotoxins. Seven microcystin toxins were tested for, and five of which were found, with MC-LR, MC-RR, and MC-YR being the most prevalent. Gomphosphaeria spp and Microcystis aeruginosa were the most dominant cyanobacterial species encountered. Together with Aphanizomenon flos-aquae, these were the cyanobacteria associated with the highest microcystin concentrations. The occurrence of several microcystin toxins indicates that there may potentially be more than one cyanobacteria species producing microcystins at many sites. Total microcystin concentrations varied over three orders of magnitude dividing the sites into two groups of high (>1000 ngMC/μgChla, six sites) or low toxicity (<200 ngMC/μgChla, eight sites). © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study details the development of a fully validated, rapid and portable sensor based method for the on-site analysis of microcystins in freshwater samples. The process employs a novel lysis method for the mechanical lysis of cyanobacterial cells, with glass beads and a handheld frother in only 10min. The assay utilises an innovative planar waveguide device that, via an evanescent wave excites fluorescent probes, for amplification of signal in a competitive immunoassay, using an anti-microcystin monoclonal with cross-reactivity against the most common, and toxic variants. Validation of the assay showed the limit of detection (LOD) to be 0.78ngmL and the CCß to be 1ngmL. Robustness of the assay was demonstrated by intra- and inter-assay testing. Intra-assay analysis had % C.V.s between 8 and 26% and recoveries between 73 and 101%, with inter-assay analysis demonstrating % C.V.s between 5 and 14% and recoveries between 78 and 91%. Comparison with LC-MS/MS showed a high correlation (R=0.9954) between the calculated concentrations of 5 different Microcystis aeruginosa cultures for total microcystin content. Total microcystin content was ascertained by the individual measurement of free and cell-bound microcystins. Free microcystins can be measured to 1ngmL, and with a 10-fold concentration step in the intracellular microcystin protocol (which brings the sample within the range of the calibration curve), intracellular pools may be determined to 0.1ngmL. This allows the determination of microcystins at and below the World Health Organisation (WHO) guideline value of 1µgL. This sensor represents a major advancement in portable analysis capabilities and has the potential for numerous other applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly sensitive broad specificity monoclonal antibody was produced and characterised for microcystin detection through the development of a rapid surface plasmon resonance (SPR) optical biosensor based immunoassay. The antibody displayed the following cross-reactivity: MC-LR 100%; MC-RR 108%; MC-YR 68%; MC-LA 69%; MC-LW 71%; MC-LF 68%; and Nodularin 94%. Microcystin-LR was covalently attached to a CM5 chip and with the monoclonal antibody was employed in a competitive 4min injection assay to detect total microcystins in water samples below the WHO recommended limit (1µg/L). A 'total microcystin' level was determined by measuring free and intracellular concentrations in cyanobacterial culture samples as this toxin is an endotoxin. Glass bead beating was used to lyse the cells as a rapid extraction procedure. This method was validated according to European Commission Decision 96/23/EC criteria. The method was proven to measure intracellular microcystin levels, the main source of the toxin, which often goes undetected by other analytical procedures and is advantageous in that it can be used for the monitoring of blooms to provide an early warning of toxicity. It was shown to be repeatable and reproducible, with recoveries from spiked samples ranging from 74 to 123%, and had % CVs below 10% for intra-assay analysis and 15% for inter-assay analysis. The detection capability of the assay was calculated as 0.5ng/mL for extracellular toxins and 0.05ng/mL for intracellular microcystins. A comparison of the SPR method with LC-MS/MS was achieved by testing six Microcystis aeruginosa cultures and this study yielded a correlation R(2) value of 0.9989.